Question \# 1(i)

Conditional:	$\sim p \rightarrow q$
Converse:	$q \rightarrow \sim p$
Inverse:	$p \rightarrow \sim q$
Contrapositive:	$\sim q \rightarrow p$

Question \# l(ii)

Conditional:	$q \rightarrow p$
Converse:	$p \rightarrow q$
Inverse:	$\sim q \rightarrow \sim p$
Contrapositive:	$\sim p \rightarrow \sim q$

Question \# 1(iii)
Conditional: $\quad \sim p \rightarrow \sim q$
Converse:
$\sim q \rightarrow \sim p$
Inverse:
$p \rightarrow q$
Contrapositive:
$q \rightarrow p$
Question \# I(iv)
Do yourself as above
Question \# 2 (i)
Statement: $(p \rightarrow \sim p) \vee(p \rightarrow q)$

p	q	$\sim p$	$p \rightarrow \sim p$	$p \rightarrow q$	$(p \rightarrow \sim p) \vee(p \rightarrow q)$
T	T	F	F	T	T
T	F	F	F	F	F
F	T	T	T	T	T
F	F	T	T	T	T

Question \# 2 (ii)
Statement: $(p \wedge \sim p) \rightarrow q$

p	q	$\sim p$	$p \wedge \sim p$	$(p \wedge \sim p) \rightarrow q$
T	T	F	F	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Question \# 2 (iii)
Statement: $\sim(p \rightarrow q) \leftrightarrow(p \wedge \sim q)$

p	Q	$\sim q$	$p \rightarrow q$	$\sim(p \rightarrow q)$	$p \wedge \sim q$	$(p \wedge \sim q) \leftrightarrow \sim(p \rightarrow q)$
T	T	F	T	F	F	T
T	F	T	F	T	T	T
F	T	F	T	F	F	T
F	F	T	T	F	F	T

\& Tautology:

The statement which is true for all possible values of the variables in it is called tautology.

\& Contingency:

The statement which is true or false depending upon the truth values of the variables involved in it is called a contingency.

\& Absurdity or Contradiction:

The statement which is false for all the possible values of the variables involved in it is called an absurdity or contradiction.
Question \# 3 (i)
Statement: $(p \wedge q) \rightarrow p$

P	q	$p \wedge q$	$p \wedge q \rightarrow p$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question \# 3 (ii)

Statement: $p \rightarrow(p \vee q)$

p	q	$p \vee q$	$p \rightarrow(p \vee q)$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology

Question \# 3 (iii)

Statement: $\sim(p \rightarrow q) \rightarrow p$

p	Q	$p \rightarrow q$	$\sim(p \rightarrow q)$	$\sim(p \rightarrow q) \rightarrow p$
T	T	T	F	T
T	F	F	T	T
F	T	T	F	T
F	F	T	F	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question \# 3 (iv)

Statement: $\sim q \wedge(p \rightarrow q) \rightarrow \sim p$

p	q	$\sim p$	$\sim q$	$p \rightarrow q$	$\sim q \wedge(p \rightarrow q)$	$\sim q \wedge(p \rightarrow q) \rightarrow \sim p$
T	T	F	F	T	F	T
T	F	F	T	F	F	T
F	T	T	F	T	F	T
F	F	T	T	T	T	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question \# 4 (i)
Statement: $\sim(p \rightarrow q) \rightarrow p$

p	$\sim p$	$p \wedge \sim p$
T	F	F
F	T	F

The last column of the above table shows that the statement is false for all values of p and q thus given statement is absurdity.

Question \# 4 (ii)

Statement: $p \rightarrow(q \rightarrow p)$

p	q	$q \rightarrow p$	$p \rightarrow(q \rightarrow p)$
T	T	T	T
T	F	T	T
F	T	F	T
F	F	T	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question \# 4 (iii)

Statement: $q \vee(\sim q \vee p)$

P	q	$\sim q$	$\sim q \vee p$	$q \vee(\sim q \vee p)$
T	T	F	T	T
T	F	T	T	T
F	T	F	F	T
F	F	T	T	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question \# 5

Consider the truth table

p	q	$\sim p$	$\sim q$	$p \wedge q$	$\sim p \wedge \sim q$	$p \vee(\sim p \wedge \sim q) \vee(p \wedge q)$	$p \vee(\sim p \wedge \sim q)$
T	T	F	F	T	F	T	T
T	F	F	T	F	F	T	T
F	T	T	F	F	F	F	F
F	F	T	T	F	T	T	T

The last two column of the above table are identical this shows that the statement $p \vee(\sim p \wedge \sim q) \vee(p \wedge q)$ and $p \vee(\sim p \wedge \sim q)$ are equal
i.e. $p \vee(\sim p \wedge \sim q) \vee(p \wedge q)=p \vee(\sim p \wedge \sim q)$

Made by: Atiq ur Rehman (atiq@ mathcity.org), http://www.mathcity.org

Error Analyst
Waiting for someone

