mathcity.org Merging man and maths	Exercise 2.4 (Solutions) TEXTBOOK OF ALGEBRA AND TRIGONOMETRY FOR CLASS XI Available online @ http://www.mathcity.org, Version: 1.0.0
Question # 1(i)	
Conditional:	$\sim p \rightarrow q$
Converse:	$q \rightarrow \sim p$
Inverse:	$p \rightarrow \sim q$
Contrapositi	we: $\sim q \rightarrow p$
Question # 1(ii)	
Conditional:	$q \rightarrow p$
Converse:	$p \rightarrow q$
Inverse:	$\sim q \rightarrow \sim p$
Contrapositi	we: $\sim p \rightarrow \sim q$
Question # 1(iii)	
Conditional:	$\sim p \rightarrow \sim q$
Converse:	$\sim q \rightarrow \sim p$
Inverse:	$p \rightarrow q$
Contrapositi	we: $q \rightarrow p$

Question # 1(iv)

Do yourself as above

Question # 2 (i)

Statement: $(p \rightarrow \sim p) \lor (p \rightarrow q)$

р	q	~ <i>p</i>	$p \rightarrow \sim p$	$p \rightarrow q$	$(p \to \sim p) \lor (p \to q)$
Т	Т	F	F	Т	Т
Т	F	F	F	F	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

Question # 2 (ii)

Statement: $(p \land \sim p) \rightarrow q$

p	q	~ <i>p</i>	$p \wedge \sim p$	$(p \wedge \sim p) \rightarrow q$
Т	Т	F	F	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

Question # 2 (iii)

Statement: $\sim (p \rightarrow q) \leftrightarrow (p \land \sim q)$

p	Q	~ q	$p \rightarrow q$	$\sim (p \rightarrow q)$	$p \wedge \sim q$	$(p \wedge \sim q) \leftrightarrow \sim (p \to q)$
Т	Т	F	Т	F	F	Т
Т	F	Т	F	Т	Т	Т
F	Т	F	Т	F	F	Т
F	F	Т	Т	F	F	Т

FSc I - 2.4 - 2

S Tautology:

The statement which is true for all possible values of the variables in it is called *tautology*.

S Contingency:

The statement which is true or false depending upon the truth values of the variables involved in it is called a *contingency*.

S Absurdity or Contradiction:

The statement which is false for all the possible values of the variables involved in it is called an *absurdity* or *contradiction*.

Question # 3 (i)

Statement: $(p \land q) \rightarrow p$

Р	q	$p \wedge q$	$p \land q \rightarrow p$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question # 3 (ii)

Statement: $p \rightarrow (p \lor q)$

p	q	$p \lor q$	$p \rightarrow (p \lor q)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	Т

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology

Question # 3 (iii)

Statement: $\sim (p \rightarrow q) \rightarrow p$

p	Q	$p \rightarrow q$	$\sim (p \rightarrow q)$	$\sim (p \rightarrow q) \rightarrow p$
Т	Т	Т	F	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	F	Т

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question # 3 (iv)

Statement: $\sim q \land (p \rightarrow q) \rightarrow \sim p$

p	q	~ <i>p</i>	~ q	$p \rightarrow q$	$\sim q \wedge (p \rightarrow q)$	$\sim q \wedge (p \rightarrow q) \rightarrow \sim p$
Т	Т	F	F	Т	F	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	Т

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question # 4 (i)

Statement: $\sim (p \rightarrow q) \rightarrow p$

р	~ <i>p</i>	$p \wedge \sim p$
Т	F	F
F	Т	F

The last column of the above table shows that the statement is false for all values of p and q thus given statement is absurdity.

Question # 4 (ii)

Statement: $p \rightarrow (q \rightarrow p)$

p	q	$q \rightarrow p$	$p \rightarrow (q \rightarrow p)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	Т
F	F	Т	Т

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question # 4 (iii)

Statement: $q \lor (\sim q \lor p)$

Р	q	~ q	$\sim q \lor p$	$q \lor (\thicksim q \lor p)$
Т	Т	F	Т	Т
Т	F	Т	Т	Т
F	Т	F	F	Т
F	F	Т	Т	Т

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question # 5

Consider the truth table

p	q	~ <i>p</i>	~q	$p \wedge q$	$\sim p \wedge \sim q$	$p \lor (\thicksim p \land \thicksim q) \lor (p \land q)$	$p \lor (\sim p \land \sim q)$
Т	Т	F	F	Т	F	Т	Т
Т	F	F	Т	F	F	Т	Т
F	Т	Т	F	F	F	F	F
F	F	Т	Т	F	Т	Т	Т

The last two column of the above table are identical this shows that the statement $p \lor (\sim p \land \sim q) \lor (p \land q)$ and $p \lor (\sim p \land \sim q)$ are equal

i.e. $p \lor (\sim p \land \sim q) \lor (p \land q) = p \lor (\sim p \land \sim q)$

Made by: Atiq ur Rehman (atiq@mathcity.org), http://www.mathcity.org

Error Analyst

Waiting for someone

